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LETTER TO THE EDITOR 

Scaling of distribution eigenvectors in a ID Anderson model 

Luca Molinari 
DipMimento di Fisica Sezione INFN di Milano, Via celoria 16. m133 Milano. Italy 

Received 30 Mach 1993 

Abstract. It is shown numerically that the dislribution of  squared components of  e i g e n w l o s  
of  the Anderson ID tight binding equation on lattices of finite lenyls, is parameuized by Ihe 
single scaling parameter x = <-IN, where is lhe localization length for thc infinite lattice 
and N is the number of sites of the fine lania. 

The I D  Anderson model describes the conductance propelties of wires with impurities at 
very low temperatures. It is defined by a tight binding equation with random potential 

where the strenghts V ,  of the potential at different sites, are independent random variables 
with the same uniform distribution in [- W/2, W/2], and E is the energy. The main property 
of this model is the exponential localization of eigenfunctions, which occurs at any non-zero 
disorder W and is usually measured by a length &,, defined as the inverse of the Lyapounov 
exponent 

+n+1+ Jr.4 + V"+" = W. (1) 

Ym(E,  W) = - d@w(l/N)(lnl@NI) (2) 

averaged over different realizations of disorder. The Lyapounov exponent is easily computed 
by the technique of transfer matrices, which is efficient for not too small disorder, a case 
which is more conveniently treated with asymptotic expansions [l]. 

When samples of finite length I < n < N are considered, it is found that the ratio 
&v/N of the localization length to the sample length is a function of the single scaling 
parameter x = &JN. This propeity corresponds to the ID case of the general scaling 
theory of conductance for disordered systems [2]. There are several ways to characterize a 
localization length for a finite lattice [3,4]. The following ones are based on generalized 
entropies 151: 

which are related to the moments of the distribution of squared components 

The lengths for q = 1 , 2  are respectively the information length and the participation ratio, 
both commonly used. For the model (1) without disorder (W = 0) the lengths are easily 
evaluated 

0953-8984/93R30319+07.50 0 1993 IOP Publishing Ud L319 



L320 Letter to the Editor 

Figure 1. The log of the probability density o f t  = logy 
for eigenvectors in the energy window 0.05 c E c 0.15. 
laaice size N = 32W and six values of disorder. From 
rigtb to leli on horizontal axis: W=3,W. 200, IM). 0.50. 
0.13. 0.016. The quantity y is defiwd in (7). 

Since the free model corresponds to the most extended states, it is convenient to introduce 
the ratios BS = f l q ’ / f $ ’ ,  with values from 1 IO 0 as disorder increases. The case of 9 = 1 
has been investigated in [6], and a very simple scaling relation was obtained 

(6) (c c 2.8). 

The same form of scaling relation, here valid for tridiagonal matrices with diagonal disorder, 
was previously found in the theory of band random matrices (BRM) [7] and then derived 
analytically for the case 9 = 2 [SI. BRM were first introduced by Wigner, and have been 
recently investigated in detail as models for chaotic hamiltonians or intermediate level 
statistics. A BRM ensemble is defined as the set of N x N symmetric matrices with non- 
zero matrix elements given by independent and identically distributed gaussian random 
variables, restricted in a band of width 26 - 1. For N + 03 the eigenstates are localized 
with length tw proportional to bZ. [9 ] .  For finite matrices the maximally extended states 
correspond to b = N ,  the case of Gaussian orthogonal ensemble. It was numerically found 
that localization ratios &. and separation of neighbouring eigenvalues depend on the single 
parameter b Z / N  [IO. I I]. Finally, Zyczkowski et al [12] have shown numerically that the 
whole distribution of squared components of eigenvectors are parametrized by the same 
single parameter. This result has been recently analytically derived [13]. 

In analogy with the above result, in this letter it is shown that the distribution of 
squared components of eigenvectors fulfils scaling also in the Anderson model, with the 
scaling parameter given by t m / N .  

Since localization depends on energy, we restrict to a definite energy window EO - A < 
E < EO + A. The eigenvectors corresponding to eigenvalues in the window are then 
computed for several matrices with given size N and disorder parameter W. A huge 
collection of values @: is easily assembled, and since the normalization of eigenvectors 
forces components to scale as N-‘I z ,  we introduce the variable 

cx 
P I  = - 1 + c x  

y = N @ i .  (7) 

It will be convenient, however, to investigate the distribution in the variable t = logy. 
Before examining scaling, let us see qualitatively how the distribution p ( y )  depends on 

disorder, for a given value N .  In figure I we plot log p ( t )  for N = 3200, E = 0.110.05 and 
several values of W. For low and high disorder, the small t behaviour of logp(r )  appears 
to be linear. with slopes 112 and zero: this is easily explained as follows. For zero disorder 
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Figure 2. Superposition of the numerical distributions 
logp(r) versus I for N = 3203 (full line) and N = 400 
(&ts),forlhiaevaluesofthescalingparameterx = W N .  
(a) x = 118, W = 0.045 for N = 400, W = 0.016 
for N = 32W. (b) x = 1.74, W = 0.37 for N = 400, 
W = 0.13 for N = 3200; (c) x = 0.031, W = 2.85 for 
N = 400, W = 1.00 for N = 3200. dII. -S. 0.0 1. 

t 

the equation ( 1 )  is solved by plane waves. The boundary conditions $0 = $,v+i = 0 select 
the eigenvalues Eh = 2cos[2krr/(N -k 111, k = 1.. . N, with corresponding eigenvector 

$Aki = q " s i n ( n k r r / ( N  + 1)). (8 )  

The distribution of the variable y. with support 0 < y < 2 is easily calculated 

P ( Y )  = ( l f j 7 ) I l m .  (9) 

In the variable f this would give the slope 112. which persists for small disorder since, for 
finite N, perturbation theory is meaningful. In the regime of strong disorder, the localization 
length L ( W )  becomes much smaller than the size N of the lattice and the tails of the 
eigenfunctions are well described by +e = Aexp(-In -n&&). This implies that for 
small y the density is 

which corresponds in figure 1 to horizontal lines with height h = log(e"m/N). For the cases 
represented in figure 1 one actually computes by means of m s f e r  matrices: for W = 3 
h = -5.65, for W = 2 h = -4.83, for W = 1 h = -3.46. These values agree quite well 
with figure 1. 
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Figure 3. Scaling of normalized lengths B"' = C'q)/C'q' 0 '  

againsf logx for q = I (triangle), q = 2 (moss)  and q = 3 
(squares), superposing data for N = 400 and N = 3200. 

The quantities lOg(y,) = lOg(p"'/l - p q  are plotted 

If these computations are done for different sizes and disorder parameters, such that the 
ratio f w / N  is the same, the probability densities p ( t )  are found to overlap. We considered 
the two sizes N = 400 and N = 3200. collecting eigenvectors in the same energy window 
as above, for a statistical sample of 800 and 100 matrices respectively. In figure 2 we give 
examples of overlapping distributions, with the scaling parameter x = f w / N  taking the 
values (a) 118 (very delocalized regime), (b)  1.74 (intermediate) and (c) 0.031 (localized 
regime). The scaling has been checked up to x = 0.002. The plotted curve is that of 
logp(t), versus f, f = logy. In all cases the curves overlap very well, and would even 
better for a more accurate choice of the values of the disorder parameter W, yielding 
closer values of the scaling parameter x. The scaling in x of the distributions of squared 
components obviously implies that of the localization lengths (3). In figure 3 the ratios 
B'q' are plotted for q = I ,  2,3 .  The plot indicates an approximate linear behaviour which 
implies a relation of type (6): 8'4' = c q x % / ( l  + c,x%), with c1 = 2.85 and a, = 1.00, 
Cz 1.62 and (12 0.97, cg = 1.16 and a3 = 0.96 

I thank Karol Zyczkowski and Ita10 Guameri for useful discussion. 
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